

Date: 09-11-2024

Dept. No.

Max. : 100 Marks

Time: 09:00 am-12:00 pm

SECTION A - K1 (CO1)

Answer ALL the Questions

1. **Answer the following.** **(5 x 1 = 5 Marks)**

- a) Mention dual nature of electron.
- b) Find the oxidation number of Mn in KMnO_4 .
- c) Draw the electron-dot structure of NH_3 .
- d) What is p-n junction?
- e) Write the molecular formula for perchloric acid.

2. **Fill in the blanks.** **(5 x 1 = 5 Marks)**

- a) Lithium and _____ are diagonally placed in the periodic table.
- b) Oxidation number of Cr in $\text{K}_2\text{Cr}_2\text{O}_7$ is _____.
- c) The geometry of BeCl_2 is _____.
- d) N_2^+ is _____ magnetic in nature.
- e) The molecular formula of thiocyanate ion is _____.

SECTION A – K2 (CO1)

3. **Match the following.** **(5 x 1 = 5 Marks)**

a)	Fluorine	– Azide
b)	Lux-Flood base	– Germanium
c)	Liq. NH_3	– Electronegativity
d)	Semiconductor	– Oxide ion donor
e)	Pseudohalogen	– Non-aqueous solvent

4. **TRUE or FALSE** **(5 x 1 = 5 Marks)**

- a) The actual outermost electronic configuration of Cr is $4s^1 3d^5$.
- b) Sodium in liquid ammonia is an oxidising agent.
- c) The bond angle in octahedral geometry is 120° .
- d) Aluminium is used as a doping element in semiconductors.
- e) HF cannot be stored in glass bottles.

SECTION B - K3 (CO2)

Answer any TWO of the following in 100 words **(2 x 10 = 20 Marks)**

5.	a) Describe the periodicity of ionization energy.	(5)
	b) Discuss Mulliken-Jaffee concept of electronegativity.	(5)
6.	Explain HSAB theory and Bronsted Lowry theory of acids and bases.	
7.	a) Explain the hybridization and geometry of BeCl_2 .	(5)
	b) Outline the nature of conductors, insulators and semiconductors using band theory.	(5)

8.	a) Write the preparation, properties, and structure of dioxygendifluoride. (5) b) Write a note on interhalogen compounds of iodine. (5)
----	--

SECTION C – K4 (CO3)

Answer any TWO of the following in 100 words (2 x 10 = 20 Marks)

9.	Outline the postulates and limitations of Bohr's theory.
10.	a) Write a note on disproportionation and double decomposition reactions. (5) b) Explain Lewis theory of acids and bases with examples. (5)
11.	a) State Sidgwick-Powell theory and explain its role in the prediction of molecular shapes. (5) b) Fluorine is diamagnetic whereas oxygen molecule is paramagnetic. Explain. (5)
12.	a) Write a note on the oxoacids of halogens. (5) b) Compare VB and MO theories of covalent bond. (5)

SECTION D – K5 (CO4)

Answer any ONE of the following in 150 words (1 x 20 = 20 Marks)

13.	a) Illustrate the Pauling scale of electronegativity. (4) b) Comment on the anomalous behaviour of fluorine. (6) c) Balance the following redox reactions by oxidation number method. (10) (i) $\text{MnO}_4^- + \text{C}_2\text{O}_4^{2-} \rightarrow \text{Mn}^{2+} + \text{CO}_2$ (acidic medium) (ii) $\text{Cr}_2\text{O}_7^{2-}{}_{(\text{aq})} + \text{SO}_2{}_{(\text{g})} \rightarrow \text{Cr}^{3+}{}_{(\text{aq})} + \text{SO}_4^{2-}{}_{(\text{aq})}$
14.	a) Construct the molecular orbital energy diagram for CO molecule and calculate the bond order. (10) b) How is bleaching powder prepared? Explain a method of estimating the amount of chlorine present in bleaching powder. (10)

SECTION E – K6 (CO5)

Answer any ONE of the following in 150 words (1 x 20 = 20 Marks)

15.	a) State and explain Pauling-Slator's rule. (5) b) Discuss the following reactions in liquid ammonia as solvent (15) (i) Acid-base reaction (ii) Ammonolysis (iii) Precipitation
16.	a) Explain in detail about the hybridization and geometry of the following compounds using VSEPR theory. (10) (i) SF_4 (ii) PCl_3 (iii) ClF_3 b) Construct a qualitative MO energy level diagram for O_2 molecule. Write the MO electronic configuration and bond order for O_2 , O_2^+ , O_2^{2+} , O_2^{2-} molecules. (10)
